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Abstract. Effects of the exciton and polariton dispersions and the nonlinear exciton and photon interactions
on the properties of polariton solitons in molecular crystals are investigated. Higher-order terms and phase-
modulation (chirp) are taken into account. Bright- and dark-soliton solutions of the resulting modified
nonlinear Schrödinger (NLS) equation are presented. Nonlinearity- and dispersion-induced critical points
on the polariton dispersion curve are obtained, separating regions with different solutions.

PACS. 71.36.+c Polaritons – 71.35.-y Excitons and related phenomena

Optical solitons have been extensively studied [1,2] due
to their importance for fiber-optics communications. Most
investigations refer to frequencies far the resonances of the
medium. Near resonance, the electromagnetic field cou-
ples to the corresponding polar excitations to form mixed
states known as polaritons. Polaritons exhibit strong dis-
persion in the resonance region which changes continu-
ously from photon- to exciton-type on the lower branch
and from exciton- to photon-type on the upper branch.
The nonlinear interactions in the polariton region origi-
nate from both the quasiparticle and the photon subsys-
tems, and together with the dispersion lead to the forma-
tion of polariton solitary waves [3–12]. Dispersion effects in
the spectra of phonon-polariton solitons have been studied
in [8] and for exciton solitons–in [13]. In the present work
we investigate the properties of exciton-polariton solitons,
taking into account the dynamical (Coulomb) and kine-
matical (statistical) exciton-exciton interactions as well as
the nonresonant (Kerr) nonlinear optical susceptibility of
the medium. This leads to higher-order dispersion terms
in the underlying nonlinear equations which govern the
formation of exciton-polariton solitons.

We start with the Hamiltonian of a system of Frenkel
electronic excitons in a molecular crystal interacting with
the electromagnetic field [8,13]:

H = ω0

∑
n

P †
nPn −

∑
n,m

VnmP †
nPm − A

∑
n,m

P †
nP †

mPnPm

−d
∑

n

(P †
nEn + PnE∗

n) (1)

where ω0 is the intramolecular excitation energy (� = 1)
and P †

n (Pn) are the corresponding creation (annihila-
tion) Pauli operators of an electron-hole pair in the nth
molecule. The second term in (1) describes the resonant
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intermolecular interaction, Vnm being the corresponding
matrix elements. The term ∼ A describes the nonlinear
dynamical interaction between excitations on neighbour-
ing molecules which has a quadrupole character. d is the
dipole moment matrix element for the exciton transitions
and En and E∗

n are the complex-conjugate parts of the
classical macroscopic electric field.

The Pauli operators obey mixed commutation rela-
tions:

[Pn, P †
m] = (1 − 2Nn)δn,m, [Pn, Pm] = 0

P 2
n = (P †

n)2 = 0, Nn ≡ P †
nPn. (2)

With the help of (2), the following equation of motion
for the operators Pn is obtained:

i
∂Pn

∂t
= ω0Pn − (1 − 2Nn)

∑
m

VnmPm

−2APn

∑
m

Nm − d(1 − 2Nn)En. (3)

In comparison with the case of vibrational excitons [8],
equation (3) contains two additional nonlinear terms pro-
portional to the local exciton density Nn, which have
statistical nature associated with the Pauli commutation
relations. The term ∼ NnVnm describes a kinematical re-
pulsion between excitons on neighbouring molecules while
the term ∼ Nnd describes the dipole moment saturation
at high exciton densities.

The equation of motion of the averaged exciton am-
plitude 〈Pn〉 ≡ αn(t) in the low-density limit (〈Nn〉 �
|αn|2) is:

i
∂αn

∂t
= ω0αn − (1 − 2|αn|2)

∑
m

Vnmαm

−2Aαn

∑
m

|αm|2 − d(1 − 2|αn|2)En. (4)
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Equation (4) is to be complimented with Maxwell’s
wave equation, which provides a second (phenomenolog-
ical) relation between the electric field and the induced
polarization:

(
∂2

∂x2
− ∂2

∂t2

)
E(x, t) =

4π
∂2

∂t2

(
d

a3
α(x, t) + χ(3)|E(x, t)|2E(x, t)

)
. (5)

The first term in the right-hand side of (5) describes the
linear polarization associated with the exciton transitions
(a is the lattice constant) and the second term – the
nonresonant (Kerr-type) nonlinear polarization associated
with other excitations with frequencies far from the ex-
citon region (their contribution to the linear polarization
can be accounted for by renormalizing the velocity of light
which we assume to be c = 1). (4) and (5) is the set which
describes the properties of coupled nonlinear excitons and
photons.

We shall seek solutions of (4) and (5) in the standard
form:

α(x, t) = ei(kx−ωt)ϕ(x, t)

E(x, t) = ei(kx−ωt)E(x, t) (6)

where k and ω are the central wave-vector and frequency
of the carrier wave. Using the nearest-neighbour approxi-
mation and taking the continuum limit in (4) we obtain:

i
∂ϕ

∂t
= (ωk − ω)ϕ − ivk(1 − 2|ϕ|2)∂ϕ

∂x
− bka2 ∂2ϕ

∂x2
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6
∂3ϕ

∂x3
− d(1 − 2|ϕ|2)E (7)
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∂
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d
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ϕ + χ(3)|E|2E). (8)

ωk and vk are the energy and the group velocity of the
noninteracting excitons, and bk is the group-velocity dis-
persion (GVD) parameter:

ωk = ω0 − 2bk, bk = V cos ak, vk = 2V a sinak. (9)

The coefficients (9) take account of the exciton dispersion
throughout the whole Brillouin zone. In equation (7) we
have kept the nonlinear dispersion term ∼ |ϕ|2∂ϕ/∂x and
the third-order linear dispersion term ∼ ∂3ϕ/∂x3. The
first one stems from the nonlocal character of the kine-
matical exciton-exciton interaction and it is similar to the
self-steepening term in the generalized NLS equation in
optics [1,2]. The second one has the same order of magni-
tude and it is particularly important for short pulses near
the zero-GVD points.

We shall consider ϕ(x, t) and E(x, t) to be slowly-vary-
ing complex functions of the running variable ξ = x − vt

(|∂ϕ/∂x| � kϕ , |∂ϕ/∂t| � ωϕ and v is the velocity
of the solitary wave), thus taking account of both ampli-
tude and phase modulation (chirp). Expressing the electric
field from (7) as a function of the polarization, using the
small-amplitude approximation (1− 2|ϕ|2)−1 � 1 + 2|ϕ|2,
substituting it in (8) and keeping first-order nonlinear dis-
persion and third-order linear dispersion terms, we end up
with a modified NLS equation for the polarization:

Dϕ − Mϕ′′ − Γ |ϕ|2ϕ − i(S − T |ϕ|2)ϕ′

+ iQϕ2ϕ ∗′ −iRϕ′′′ = 0 (10)

where

D = ωk − ω − Ω0ω
2

k2 − ω2

M = a2bk

+
2(k − ωv)(vk − v) + (1 − v2)(ωk − ω) − Ω0v

2

k2 − ω2

Γ = 4A − 2(ω0 − ω) + χ
ω2(ωk − ω)3

k2 − ω2

S = (vk − v) +
[2(k − ωv)(ωk − ω) − 2Ω0ωv]

k2 − ω2

Q = {4(2A − ω0 + ω)(k − ωv)
+χω(ωk − ω)2[2v(ωk − ω) − ω(vk − v)]}/(k2 − ω2)

T = 2v + {8(2A− ω0 + ω)(k − ωv)
+2χω(ωk − ω)2[2v(ωk − ω) + ω(vk − v)]}/(k2 − ω2)

R =
vka2

6
− 2(k − ωv)bka2 + (1 − v2)(vk − v)

k2 − ω2

Ω0 =
4πd2

a3
, χ =

4π

d2
χ(3). (11)

Equation (10) governs the formation and the proper-
ties of chirped exciton-polariton solitons. Note that the
coefficients (11) contain terms ∼ (k2 − ω2)−1 which are
dominant in the photonlike parts of the spectrum and
in the resonance region, where k ∼ ω and they can be
neglected in the excitonlike part of the spectrum where
k � ω. For T = Q = R = 0 (10) reduces to the stan-
dard NLS equation whose solutions have been extensively
studied.

Solitary-wave analytical solutions of equation (10) can
be looked for in the factorized form:

ϕ(ξ) = ρ(ξ)eiΦ(ξ) (12)

where ρ(ξ) is the amplitude and Φ(ξ) is the nonlinear con-
tribution to the phase. Separating the real and the imag-
inary parts of (10), the following system of coupled non-
linear equations is obtained:

(D + MΦ′2)ρ − (M − 3RΦ′)ρ′′ − Γρ3

+ [S − (T − Q)ρ2]ρΦ′ + 3Rρ′Φ′′ + RρΦ′′′ = 0 (13)

MρΦ′′ + (S + 2MΦ′)ρ′ − (T + Q)ρ2ρ′ + Rρ′′′ = 0. (14)
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To solve equations (13, 14) we can approximate the
third-derivative ρ′′′ by the following expression derived
from the cubic NLS equation:

ρ′′′ = (D − 3Γρ2)ρ′/M. (15)

With the help of (15), the equation for the phase (14) can
be integrated to give:

Φ′ = −SM + RD

2M2
+

(T + Q)M + 3RΓ

4M2
ρ2. (16)

We shall look for solutions with fixed central wave-
number, for which the constant term in (16) must van-
ish i.e.

SM + RD = 0. (17)

Equation (17) generalizes the standard equation for the
velocity of the polariton solitary waves S = 0 by taking
into account the third-order dispersion.

Substituting the phase derivatives from (16) into (13),
we end up with an equation for the amplitude ρ which
contains third- and fifth-order nonlinear terms:

Dρ − Mρ′′ − Gρ3 − Fρ5 = 0 (18)

where

G = Γ − 3RD

M3
[(T + Q)M + 3RΓ ]

F =
(3T − 5Q)M + 33RΓ

16M3
[(T + Q)M + 3RΓ ]· (19)

(18) is known as the cubic-quintic NLS equation which has
been obtained and investigated in some detail in optics
[14,15]. The quintic nonlinear term originates exclusively
from the higher-order dispersion terms in (10, 13, 14).
The latter also contribute to the cubic nonlinear coefficient
G. The physics of the exciton-polariton solitary waves is
controlled by the coefficients in (18). They are complicated
functions of the frequency and the wave-vector and govern
the type of the solitary-wave solutions.

Equation (18) possesses the following bright-soliton
solution:

ρ(ξ) = ρ0

√
1 + B

1 + B cosh(2ξ/L)
, B > 0 (20)

where

ω = ωk − Gρ2
0(1 + B)

4
− Ω0ω

2

k2 − ω2

L2 =
4M

Gρ2
0(1 + B)

(21)

and

B = 1 +
4Fρ2

0

3G
· (22)
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Fig. 1. Bright-soliton solution (20) for F = 0 (solid line) and
for F �= 0 and B > 1 (dashed line).

From (21) it follows that bright-solitons are only possible
for M/G > 0. For B = 1 (F = 0) (20) coincides with the
corresponding solution of the cubic NLS equation.

The dark-soliton solution of (18) has the form:

ρ(ξ) = ρ1

√
B sinh ξ/L√

1 + B sinh2 ξ/L
, B > 0 (23)

where

ω = ωk − Gρ2
1

1 − 3B

2(2 − 3B)
− Ω0ω

2

k2 − ω2

L2 =
2M(2 − 3B)

Gρ2
1

(24)

and

B =
3G + 4Fρ2

1

3(G + 2Fρ2
1)

· (25)

For B = 1 (23) coincides with the dark-soliton solution
of the NLS equation. The relation (24) opens up two pos-
sibilities for the existence of dark-soliton solutions (23):
B > 2/3 implies M/G < 0 which is the usual condition
for dark-soliton solutions of the cubic NLS equation. For
B < 2/3 however, dark solitons exist for M/G > 0, which
is the condition for the existence of bright-solitons too.
Thus the regions with bright- and dark-soliton solutions
of equation (18) are not completely separated. The anal-
ysis of the coefficients (19) shows, that bright and dark
solitons can coexist only in very narrow regions near the
zeroes of G, where G and F have different signs.

The real part and the squared modulus of the bright-
soliton solution (20) (dashed line) are shown in Figure 1.
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For B > 1 the quintic term leads to a blue shift (chirp) of
the central carrier-wave frequency and a decrease of the
soliton’s width, compared to the solution of the cubic NLS
equation (solid line). B < 1 yields a red frequency shift
and an increase of the soliton’s width.

As mentioned above, the coefficients in (18) govern the
type of the solitary-wave solutions and their parameters.
The type of the soliton solution depends strongly on the
sign of the ratio M/G. Except for the zero GVD points
M = 0, where all approximations are violated, the nonlin-
ear coefficient G differs from Γ by a small parameter and
the analysis can be carried out using G � Γ .

With the help of the linear polariton dispersion rela-
tion D = 0, the nonlinear coefficient G can be approxi-
mated by:

G � Γ � 2(ω − ω0 + 2A) +
Ω3

0χ

(1 − k2/ω2)4
· (26)

The first term in (26) originates from the exciton-exciton
interaction and it is positive for ω > ω0−2A and negative
for ω < ω0 − 2A. It is dominant in the excitonic part of
the spectrum (for k � ω). The second (Kerr-type) term
in (25) is always positive (χ > 0) and due to the strong
resonance at k � ω it is dominant in the photon-like parts
of the spectrum. It decreases very rapidly for small devi-
ation from the light-line and the two terms cancel each
other in the resonance region at points k1 and k2 on the
upper and lower polariton branches respectively (Fig. 2).
The nonlinear coefficient G has a third zero k4 in the ex-
citonic part of the spectrum for ω � ω0 − 2A.

The GVD coefficient M plays the role of an inverse po-
lariton effective mass and includes the effects of both the
polariton- and the exciton-type dispersion. The polariton-
type dispersion dominates in the photonlike parts of the
spectrum and in the resonance region (Fig. 2). In these
regions M is positive on the upper branch (k < ω) and
negative on the lower branch (k > ω). |M | decreases on
the lower branch with the increase of the wave-number
and the GVD coefficient M vanishes at a critical point k3

which reflects the change from a polariton- to an exciton-
type dispersion. M has a second zero in the middle of the
Brillouin zone at k5 � π/2a, where the exciton effective
mass changes sign. Near the zero-GVD points k3 and k5,
the nonlinear coefficients in (18) diverge and these regions
should be excluded from the analysis. This is a result of
the approximation (15) which correlates higher-order dis-
persion and nonlinear terms.

Keeping in mind the signs of G and M , we can deter-
mine the regions corresponding to bright- and dark-soliton
solutions along the polariton dispersion curve (Fig. 2). On
the upper branch, dark solitons exist for k < k1 and bright
solitons – for k > k1. On the lower branch five regions with
different type of solutions are formed: dark solitons exist
in the regions 0 < k < k2, k3 < k < k4 and k > k5;
and bright solitons – for k2 < k < k3 and k4 < k < k5.
The zero-nonlinearity critical point k4 is shifted from the
zero GVD point k5 due to the presence of the dynami-
cal interaction ∼ A. For A = 0, k4 ≡ k5 and this yields
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Fig. 2. Critical points on the exciton-polariton dispersion
curves which separate bright- from dark-soliton solutions. Ω0 =
0.1ω0, V = 0.2ω0 and A = 0.05ω0. ωT = ω0−2V , ωL = ωT +Ω0

and ωA = ω0 − 2A.

dark-soliton solutions in the whole exciton-like part of the
spectrum (k > k3).

The present investigation shows that the properties of
polariton solitary waves far from the excitonic resonances
(where polaritons are nearly photons) are governed by the
polariton-type dispersion (which has different signs on the
two branches) and the Kerr-type optical nonlinearity. This
opens up new channels for control of the properties of
optical solitons in these regions. The changes of the type
of the solution at k1 and k2 which are in the resonance
region can have practical applications in optical switching
devices.
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