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Exciton-polariton solitary waves
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Abstract. Effects of the exciton and polariton dispersions and the nonlinear exciton and photon interactions
on the properties of polariton solitons in molecular crystals are investigated. Higher-order terms and phase-
modulation (chirp) are taken into account. Bright- and dark-soliton solutions of the resulting modified
nonlinear Schrodinger (NLS) equation are presented. Nonlinearity- and dispersion-induced critical points
on the polariton dispersion curve are obtained, separating regions with different solutions.

PACS. 71.36.+c Polaritons — 71.35.-y Excitons and related phenomena

Optical solitons have been extensively studied [1,2] due
to their importance for fiber-optics communications. Most
investigations refer to frequencies far the resonances of the
medium. Near resonance, the electromagnetic field cou-
ples to the corresponding polar excitations to form mixed
states known as polaritons. Polaritons exhibit strong dis-
persion in the resonance region which changes continu-
ously from photon- to exciton-type on the lower branch
and from exciton- to photon-type on the upper branch.
The nonlinear interactions in the polariton region origi-
nate from both the quasiparticle and the photon subsys-
tems, and together with the dispersion lead to the forma-
tion of polariton solitary waves [3-12]. Dispersion effects in
the spectra of phonon-polariton solitons have been studied
in [8] and for exciton solitons—in [13]. In the present work
we investigate the properties of exciton-polariton solitons,
taking into account the dynamical (Coulomb) and kine-
matical (statistical) exciton-exciton interactions as well as
the nonresonant (Kerr) nonlinear optical susceptibility of
the medium. This leads to higher-order dispersion terms
in the underlying nonlinear equations which govern the
formation of exciton-polariton solitons.

We start with the Hamiltonian of a system of Frenkel
electronic excitons in a molecular crystal interacting with
the electromagnetic field [8,13]:
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where wg is the intramolecular excitation energy (i = 1)
and P! (P,) are the corresponding creation (annihila-
tion) Pauli operators of an electron-hole pair in the nth
molecule. The second term in (1) describes the resonant
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intermolecular interaction, V,,,, being the corresponding
matrix elements. The term ~ A describes the nonlinear
dynamical interaction between excitations on neighbour-
ing molecules which has a quadrupole character. d is the
dipole moment matrix element for the exciton transitions
and £, and E; are the complex-conjugate parts of the
classical macroscopic electric field.

The Pauli operators obey mixed commutation rela-
tions:

[Pn7 P;L] = (1 - 2Nn)5n,m;
Pr% = (P£)2 =0,

[Pru Pm] =0
N, = Pip,. (2)

With the help of (2), the following equation of motion
for the operators P, is obtained:
0P,

i = woP, — (1 —2N,,) ; Vo P

~2AP, > Ny, —d(1 = 2N,)E,. (3)

In comparison with the case of vibrational excitons [§],
equation (3) contains two additional nonlinear terms pro-
portional to the local exciton density N,, which have
statistical nature associated with the Pauli commutation
relations. The term ~ N, V,,.,, describes a kinematical re-
pulsion between excitons on neighbouring molecules while
the term ~ N,d describes the dipole moment saturation
at high exciton densities.

The equation of motion of the averaged exciton am-
plitude (P,) = ay,(t) in the low-density limit ((N,) =~
|on|?) is:
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Equation (4) is to be complimented with Maxwell’s
wave equation, which provides a second (phenomenolog-
ical) relation between the electric field and the induced
polarization:
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The first term in the right-hand side of (5) describes the
linear polarization associated with the exciton transitions
(a is the lattice constant) and the second term — the
nonresonant (Kerr-type) nonlinear polarization associated
with other excitations with frequencies far from the ex-
citon region (their contribution to the linear polarization
can be accounted for by renormalizing the velocity of light
which we assume to be ¢ = 1). (4) and (5) is the set which
describes the properties of coupled nonlinear excitons and
photons.

We shall seek solutions of (4) and (5) in the standard
form:

Oé(l‘, t) - ei(kxfwt)so(l,’ t)
E(x,t) = e Fe=w g (1 1) (6)
where k£ and w are the central wave-vector and frequency

of the carrier wave. Using the nearest-neighbour approxi-
mation and taking the continuum limit in (4) we obtain:
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wi and v are the energy and the group velocity of the
noninteracting excitons, and by is the group-velocity dis-
persion (GVD) parameter:

wp =wo — 2bg, by =Vcosak, v, =2Vasinak. (9)
The coefficients (9) take account of the exciton dispersion
throughout the whole Brillouin zone. In equation (7) we
have kept the nonlinear dispersion term ~ |¢|?0¢/0x and
the third-order linear dispersion term ~ 0%¢/dx3. The
first one stems from the nonlocal character of the kine-
matical exciton-exciton interaction and it is similar to the
self-steepening term in the generalized NLS equation in
optics [1,2]. The second one has the same order of magni-
tude and it is particularly important for short pulses near
the zero-GVD points.

We shall consider ¢(x,t) and £(x,t) to be slowly-vary-
ing complex functions of the running variable £ = x — vt
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(|10¢/0z| < ko, |0p/0t] < wp and v is the velocity
of the solitary wave), thus taking account of both ampli-
tude and phase modulation (chirp). Expressing the electric
field from (7) as a function of the polarization, using the
small-amplitude approximation (1 — 2|¢|?)™1 ~ 1+ 2|¢|?,
substituting it in (8) and keeping first-order nonlinear dis-
persion and third-order linear dispersion terms, we end up
with a modified NLS equation for the polarization:

Do — M¢" — I'lg|*e —i(S — T|e|*)¢’

+iQp?p ¥’ —iRY" =0 (10)
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Equation (10) governs the formation and the proper-
ties of chirped exciton-polariton solitons. Note that the
coefficients (11) contain terms ~ (k? — w?)~! which are
dominant in the photonlike parts of the spectrum and
in the resonance region, where k£ ~ w and they can be
neglected in the excitonlike part of the spectrum where
k> w. For T = Q = R = 0 (10) reduces to the stan-
dard NLS equation whose solutions have been extensively
studied.

Solitary-wave analytical solutions of equation (10) can
be looked for in the factorized form:

0(€) = p(€)e'?®

where p(§) is the amplitude and $(€) is the nonlinear con-
tribution to the phase. Separating the real and the imag-
inary parts of (10), the following system of coupled non-
linear equations is obtained:

(12)

(D + M&"*)p — (M — 3R®)p" — I'p®
+[S — (T — Q)p*|p® + 3Rp'®" + Rp®" =0 (13)

Mpd" + (S +2M®)p' — (T + Q)p*p' + Rp" = 0. (14)
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To solve equations (13, 14) we can approximate the
third-derivative p”" by the following expression derived
from the cubic NLS equation:

p" = (D —3p*)p M. (15)

With the help of (15), the equation for the phase (14) can
be integrated to give:

_SM +RD

P =
202

(T+@M +3RT ,

4M? (16)

We shall look for solutions with fixed central wave-
number, for which the constant term in (16) must van-
ish i.e.
SM + RD = 0. (17)

Equation (17) generalizes the standard equation for the
velocity of the polariton solitary waves S = 0 by taking
into account the third-order dispersion.

Substituting the phase derivatives from (16) into (13),
we end up with an equation for the amplitude p which
contains third- and fifth-order nonlinear terms:

Dp—Mp"' —Gp®> —Fp° =0 (18)
where
3RD
G=T-—05 (T + Q)M + 3R]
(3T —5Q)M + 33RI’
F = e (T + Q)M + 3RI']- (19)

(18) is known as the cubic-quintic NLS equation which has
been obtained and investigated in some detail in optics
[14,15]. The quintic nonlinear term originates exclusively
from the higher-order dispersion terms in (10, 13, 14).
The latter also contribute to the cubic nonlinear coefficient
G. The physics of the exciton-polariton solitary waves is
controlled by the coefficients in (18). They are complicated
functions of the frequency and the wave-vector and govern
the type of the solitary-wave solutions.

Equation (18) possesses the following bright-soliton
solution:

1+B
= B>0 20
p(€) W st (20)
where
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W= W 4 k2 — w2
4M
2=_—_—"" 21
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and
4Fpp
B=1 . 22
+35G (22)
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Fig. 1. Bright-soliton solution (20) for F' = 0 (solid line) and
for F' # 0 and B > 1 (dashed line).

From (21) it follows that bright-solitons are only possible
for M/G > 0. For B =1 (F = 0) (20) coincides with the
corresponding solution of the cubic NLS equation.

The dark-soliton solution of (18) has the form:

VBsinhé/L
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1-3B
_ _ 2 _
w=wr = Ghign3p)
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Gpi

B>0
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where
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For B = 1 (23) coincides with the dark-soliton solution
of the NLS equation. The relation (24) opens up two pos-
sibilities for the existence of dark-soliton solutions (23):
B > 2/3 implies M/G < 0 which is the usual condition
for dark-soliton solutions of the cubic NLS equation. For
B < 2/3 however, dark solitons exist for M/G > 0, which
is the condition for the existence of bright-solitons too.
Thus the regions with bright- and dark-soliton solutions
of equation (18) are not completely separated. The anal-
ysis of the coefficients (19) shows, that bright and dark
solitons can coexist only in very narrow regions near the
zeroes of GG, where G and F' have different signs.

The real part and the squared modulus of the bright-
soliton solution (20) (dashed line) are shown in Figure 1.
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For B > 1 the quintic term leads to a blue shift (chirp) of
the central carrier-wave frequency and a decrease of the
soliton’s width, compared to the solution of the cubic NLS
equation (solid line). B < 1 yields a red frequency shift
and an increase of the soliton’s width.

As mentioned above, the coefficients in (18) govern the
type of the solitary-wave solutions and their parameters.
The type of the soliton solution depends strongly on the
sign of the ratio M/G. Except for the zero GVD points
M = 0, where all approximations are violated, the nonlin-
ear coefficient G differs from I" by a small parameter and
the analysis can be carried out using G ~ I'.

With the help of the linear polariton dispersion rela-
tion D = 0, the nonlinear coefficient G can be approxi-
mated by:

28 x

~ [ ~2w— 2A —_—
G (w wo + )+ (171’62/0}2)4

(26)

The first term in (26) originates from the exciton-exciton
interaction and it is positive for w > wy—2A and negative
for w < wy — 2A. It is dominant in the excitonic part of
the spectrum (for & > w). The second (Kerr-type) term
in (25) is always positive (x > 0) and due to the strong
resonance at k ~ w it is dominant in the photon-like parts
of the spectrum. It decreases very rapidly for small devi-
ation from the light-line and the two terms cancel each
other in the resonance region at points k1 and ks on the
upper and lower polariton branches respectively (Fig. 2).
The nonlinear coefficient G has a third zero k4 in the ex-
citonic part of the spectrum for w ~ wy — 2A4.

The GVD coefficient M plays the role of an inverse po-
lariton effective mass and includes the effects of both the
polariton- and the exciton-type dispersion. The polariton-
type dispersion dominates in the photonlike parts of the
spectrum and in the resonance region (Fig. 2). In these
regions M is positive on the upper branch (k < w) and
negative on the lower branch (k > w). |M| decreases on
the lower branch with the increase of the wave-number
and the GVD coefficient M vanishes at a critical point ks
which reflects the change from a polariton- to an exciton-
type dispersion. M has a second zero in the middle of the
Brillouin zone at ks ~ 7/2a, where the exciton effective
mass changes sign. Near the zero-GVD points k3 and ks,
the nonlinear coefficients in (18) diverge and these regions
should be excluded from the analysis. This is a result of
the approximation (15) which correlates higher-order dis-
persion and nonlinear terms.

Keeping in mind the signs of G and M, we can deter-
mine the regions corresponding to bright- and dark-soliton
solutions along the polariton dispersion curve (Fig. 2). On
the upper branch, dark solitons exist for k < k; and bright
solitons — for k > k;. On the lower branch five regions with
different type of solutions are formed: dark solitons exist
in the regions 0 < k < ko, ks < k < k4 and k > ks;
and bright solitons — for ks < k < k3 and ky < k < ks.
The zero-nonlinearity critical point k4 is shifted from the
zero GVD point k5 due to the presence of the dynami-
cal interaction ~ A. For A = 0, k4 = ks and this yields
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Fig. 2. Critical points on the exciton-polariton dispersion
curves which separate bright- from dark-soliton solutions. 29 =
0.1wo, V = 0.2wo and A = 0.05wo. wr = wo—2V, wr = wr+2
and wa = wo — 2A.

dark-soliton solutions in the whole exciton-like part of the
spectrum (k > k3).

The present investigation shows that the properties of
polariton solitary waves far from the excitonic resonances
(where polaritons are nearly photons) are governed by the
polariton-type dispersion (which has different signs on the
two branches) and the Kerr-type optical nonlinearity. This
opens up new channels for control of the properties of
optical solitons in these regions. The changes of the type
of the solution at k; and ks which are in the resonance
region can have practical applications in optical switching
devices.
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